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lMTRODUCTKN 
Investigations of one-dimensional moving boundary prob- 
lems associated with freezing and thawing have been of great 
practical use and theoretical sig&cance, as in freezing and 
melting of lake ice, cooling of large masses of igneous rock, 
materials processing and purification, metal casting and 
growth of pure crystals from melts and solutions. Many 
analytical solutions have been reported with a few special 
classes of boundary and initial conditions [l-3], and different 
approximate solutions have been obtained to predict the 
temperature distribution and interface movement in the 
phase change heat transfer process [46] for complicated 
boundary conditions. However, few reports are available in 
the literature related to the discussion of the penetration rate 
of phase change interface. Here, we will present a comparison 
of penetration rate characteristics of conduction-dominated 
freezing phase change interface for the case of a semi-infinite 
body with different boundary conditions. The emphasis 
focuses on the two-phase problems with convective cooling 
boundary conditions. 

The problems consider a semi-infinite body of phase 
change medium, as shown in Fig. 1. The initial temperature 
of the liquid (To) is assumed to be uniform and equal to 
the fusion or freezing temperature, Tc At t 3 0, the fixed 
boundary is subject to the constant temperature (T,) or 
specified energy flow, either a specified heat flux (4) or con- 
vective cooling with a constant heat transfer coefficient, h, 
and a constant sub-freezing ambient temperature, T,. As 
freezing takes place, the temperature changes in the solid 
region. The problems can be solved accurately for different 
cases accordingly. 

1. Constant surface temperature, T, < T, 
The solution of the phase change interface movement for 

the classical Stefan problem [7], where 1 is given by the 
following equation, is : 

s(t) = 21(cQ)“2 (1) 

lei’ erf(i) = W-T,), 

Define the penetration rate as : 

We have 
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Fig. 1. Physical model for one-dimensional semi-infinite 
freezing problem. 

From equation (4) it is obvious that the pen&ration rate 
of phase change interface is decreasing monotonously. 

2. Constani heatpux, q 
The accurate solution for this case can be expressed in the 

form of Taylor series expansions [8], that is, 

where 

and, therefore, we have 

V=2LL43t+_~t2__ 5 q5 17 q7 

PL ksp3L3 2 k:p5L5 
---ta+..., 

2 k:p’L’ 

(5) 

(6) 

(7) 

Obviously, the penetration rate reaches the maximum value, 
q/pL, at the initiation of freezing and then decreases with 
time. 

3. Convective cooling boundary condition 
Lozano and Reemsten [9] obtained the solution of the 

penetration rate for this case, which can be written as : 
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NOMENCLATURE 

CP heat capacity Greek symbols 
h convective heat transfer coefficient thermal diffusivity 
k thermal conductivity : thickness of the thermal boundary layer 
L latent heat of fusion P density. 
4 heat flux 
s phase change interface position Subscripts 
Ste Stefan number, C.(rr- T,)/L 0 initial 
Ste’ modified Stefan number, C, (TO - Tr)/L f freezing 
t time I liquid phase 
frill coefficient, defined in equation (16) S solid phase 
T temperature W wall 
V penetration rate. a ambient. 

t @G-r- Ta)2WP+W-r-Ta)) tZ + _ MT,- Ta) s _ 
PL 2k.a,L3p’ 

dd, 6a, ds 
dr=6-3;i; 

I (12) 

@) 
where tf stands for the precooling time and can be obtained 
also from the integral solution as [lo] 

and, hence, we have 

v = h(Tr- r,) -- 
PL 

h’(T,- ~.)%&+UT,- r,)) t+ 

k,a,L3p3 

(9) 

The maximum penetration rate will be h(T,- T,)/pL, which 
takes place at the initiation of freezing, t = 0. 

It can be concluded from the above three cases that, for 
the simple freezing heat transfer process, the maximum pen- 
etration rate exists at the initiation of phase change and then 
decreases with time. Likewise, for the isothermal boundary 
condition, penetration rate decreases with the inverse ratio 
of 4; however, for the boundary conditions of specified 
energy flow, the penetration rate proceeds almost linearly 
with time when freezing time, t, is small. 

For the cases where the initial temperature of the liquid 
(To) is assumed to be uniform and higher than the fusion 
temperature, Tf, the temperature will change in both solid 
and liquid regions. The statements of the boundary con- 
ditions are the same as the single-phase cases. 

For such a two-phase problem with isothermal boundary 
condition, the solution can be expressed in the same way as 
equation (1), but I would be given by 

e-i* k, ci 
erf(A) + k, 6 0 

I’* T,-To e-4aJq AL& 

Tr- Tw erfc[i(a,/a,)‘i2] = C,b(r,- Tw) 

(10) 
That is, the penetration rate decreases with time monot- 
onously. 

As to the two-phase problems with the specified energy 
flow, as discussed by Wang and Ma [lo], freezing begins only 
after a definite period of precooling for the temperature at a 
cooled surface to reach freezing point, i.e. the freezing process 
will experience the durations of precooling and freezing. 
Then there have been no exact solutions until now. Here, the 
convective boundary condition is discussed as an example, a 
heat balance integral approximate solution is obtained for 
t > th as [IO] : 

(11) 

t +_ 
’ 3ah’ 

b is given by 

Equations (11) and (12) can be easily solved by the Runge- 
Kutta method. The solutions of the penetration rate for 
water have been shown in Fig. 2. When the modified Stefan 
number, Sic’, is equal to zero, the results (by the straight line 
in Fig. 2) stand for the simple freezing with convective coo- 
ling boundary case. It is easy to know from Fig. 2 that the 
penetration rate for the two-phase cases with the convective 
boundary condition is zero at the initiation of freezing occur- 
rence, which is quite different from that of simple freezing 
problems. As time goes on, the penetration rate increases to a 
certain maximum value and then decreases gradually. There 
exists a transition point of penetration rate in the freezing 
heat transfer process. The maximum penetration rate takes 
place not at the beginning and not at the wall surface, as 
compared with the simple cases. 
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Fig. 2. Penetration rate for water with convective cooling 

boundary condition. 
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The comparisons ofpenetration rate with different Ste and 
Be’ are shown in Fig. 3. Ste has a more obvious effect on the 
penetration rate than the Sre’ number. With the increasing of 
Ste or decreasing of Ste’, the time for the attachment of 
maximum penetration rate will be shorter after the initiation 
of freezing occurrence. 

MATHEMATlCAL PBEDlCTlON OF 
THE MAXIMUM PENETRATION BATE 

WHC-COOUNG BOUNDARY 
CONDITION 

In order to demonstrate and predict the above analyses, 
the Chan’s quasi-steady analytical solution of the two-phase 
freezing problem subject to convective cooling boundary 
condition [ 1 l] is introduced. We have : 

(15) 

where 
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Equation (IS) was solved by the RungeKutta method and 
the solutions agree well with the above-mentioned heat balance 
integral approximation soh&icms [12], as shown in Fig. 4. 

Surely penetration rate will be always higher than zero, 
and so we get from equation (15) 

k 
C-CA 

(17) 

Meanwhile, the first derivative of the penetration rate is 

ml V v’= --__ 4 

2 + 2(t- t,)‘12 
(18) 

Let v’ = 0, then 

V m2 1 z-p, 
2m, (t-l,))~~~ 

(19) 

With equation (15) substituted into equation (19) it yields 

The second derivative of the penetration rate is easily 
derived from equation (20). Introducing equations (17) and 
(19), it leads to 

Ste=O.116 
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Fig. 3. Comparisons of penetration rate with different Ste and Ste’. 
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Fig. 4. Comparisons of Chan’s quasi-steady analytical solutions and heat balance integral solution. 

That is, an extreme value exists in the system. Let 

1 
-------andY=y-F. 
(t- t,y 

(22) 
Equation (20) would be simplified to 

y’+<y+n = 0 with 5 = --+A: n = -$A:-A,. 

(23) 

The disciminant equation of equation (23) is 
A = (n/2)*+ (5/3)3 > 0, thus there is only one real root for 
equation (23), i.e. the extreme value of penetration rate is 
the maximum value. 

Solving equation (23) gets 

+ 7-5 _dm-+<. (24) 

Combining with equation (15), equation (24) can be used 
to predict the maximum penetration rate of two-phase freez- 
ing problems with convective cooling boundary condition. 
When Ste = 0.07 and Ste’ = 0.252 for water, the prediction 
result of V,,,, from equations (15) and (24) is 1.001 pm s-‘, 
while the solution from the integral approximate equations 
of (11) and (12) is 0.9216 pm s-l. 

CONCLUSIONS 

For the one-dimensional conduction-dominated simple 
freezing process, the maximum penetration rate takes place 
at the initiation of phase change and then decreases with 
time. Likewise, for the isothermal boundary condition, pen- 
etration rate decreases with the inverse ratio of fi ; however, 
for the boundary conditions of specified energy flow, the 
penetration rate proceeds ahnost linearly with time when 
freezing time, t, is small. 

For the two-phase freezing problems with isothermal 
boundary condition, the characteristic of penetration rate is 
similar to that of the simple freezing case. But the maximum 
penetration rate was found to occur at a certain distance 
away from the cold wall, not at the initiation of freezing for 
the specified energy flow boundary condition. The results 
were further demonstrated mathematically and the equation 
for predicting the maximum penetration rate was derived, 
which may be of great practical significance. 
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